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Exercise 1.1 (E)

The two prey diet choice problem- Show that the rate of flow of energy for a forager when

they generalize and eat either prey upon encounter is RG = E1λ1+E2λ2

(1+h1λ1+h2λ2)
. T is the total

time, H is the handeling time, and S is the time spent searching. E is the energy gain, and

λ is the rate that prey are encountered by the predator.

T = S + H1 + H2

T = S + h1λ1S + h2λ2S

T = S(1 + h1λ1 + h2λ2)

S =
T

1 + h1λ1 + h2λ2

RG =
E1λ1 + E2λ2

(1 + h1λ1 + h2λ2)

Exercise 1.2 (E)

Show that Rs > Rg implies that λ1 > E2

E1h2−E2h1

Since we know

Rs =
E1λ1

1 + h1λ1

and

Rg =
E1λ1 + E2λ2

1 + h1λ1 + h2λ2

then by our given

E1λ1

1 + h1λ1

>
E1λ1 + E2λ2

1 + h1λ1 + h2λ2

Then we solve for λ1:

E1λ1(1 + h1λ1 + h2λ2) > (E1λ1 + E2λ2)(1 + h1λ1)

E1λ1λ2h2 − E2λ1λ2h1 > E2λ2
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λ1(E1λ2h2 − E2λ2h1) > E2λ2

λ1 >
E2λ2

E1λ2h2 − E2λ2h1

λ1 >
E2

E1h2 − E2h1

Exercise 1.3 (E)

The gain function, G(t), describes the energetic value of food removed by a forager for resi-

dence time, t. Two possible forms for the gain function are G1(t) = at
(b+t)

and G2(t) = at2

(b+t2)
.

Figure 1. Gain Functions versus Time.
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The function G2(t) describes some kind of initial slowing of the energy gain prior to an

inflection point and then experiences a smooth increase until it flattens out implying there is

some factor associated with the foraging spot that hinders the organism from gaining energy

at a uniform rate.

Variables

Possible values for variables a, b are foraging costs and food abundance in the patches. Note

that the same constants (a and b) are used in the expression, but they have different mean-

ings. Since we’ll be measuring gain in energy units, kilocalories, this implies that b will

be in units of time, minutes in G1(t) and minutes2 in G2(t).Variable a will be in units of

energy, kilocalories in G1(t) and kilocalories in G2(t).

Exercise 1.4 (M)

Show that based on R(g, x) = g
s
, S(x) = g

x
(1− cx−a) the optimizing value of x is (c(a+1))

1
a .

R(x) =
g

x
(1− cx−a)

gR(x) =
1

x
(1− cx−a)

gR(x) = x−1 − cx−a−1

Now we’re going to find the derivative of R and set it equal to 0 and solve for x.

gR′(x) = −x−2 + c(a + 1)x−a−2 = 0

c(a + 1)x−a−2

x−a−2
=

x−2

x−a−2

c(a + 1) = xa

x = c(a + 1)
1
a

Exercise 1.5- Unbeatable Sex Ratio (M)

W (r, r∗)=the fitness depending on upon the sex ratio r that the mutant female uses and the

sex ratio r∗ that other females use.

E=eggs

r∗ =normal individual’s fraction of sons

r =mutant individual’s fraction of sons

W (r, r∗) = E2(1− r) + E2[(1− r) + N(1− r∗)
r

r + Nr∗
]
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W (r, r∗)

E2
= (1− r) +

r(1− r)

r + Nr∗
+

rN(1− r∗)

r + Nr∗

Now take the derivative with respect to r and set the equation equal to zero.

0 =
d

dr
(1− r) +

d

dr
(

r − r2

r + Nr∗
) + N(1− r∗)

d

dr
(

r

r + Nr∗
)

0 = −1 +
(r + Nr∗)− r

(r + Nr∗)2
− 2r(r + Nr∗)− r2

(r + Nr∗)2
+ N(1− r∗)

(r + Nr∗)− r

(r + Nr∗)2

Now substitute r = r∗, since W (r, r∗) is maximized at this point

0 = −1 +
(r∗ + Nr∗)− r∗

(r∗ + Nr∗)2
− 2r∗(r∗ + Nr∗)− r∗2

(r∗ + Nr∗)2
+ N(1− r∗)

r∗ + Nr∗ − r∗

(r∗ + Nr∗)2

0 = −1 +
Nr

(r∗2 + Nr∗2)2
− 2r∗(r∗ + Nr∗)− r2

(r∗ + Nr∗)2
+

N2r∗(1− r∗)

(r∗ + Nr∗)2

1 =
Nr∗ − 2r∗2 − 2Nr∗2 + r∗2 + N2r∗(1− r∗)

(r∗ + Nr∗)2

(r∗ + Nr∗)2 = Nr∗ − 2r∗2 − 2Nr∗2 + r∗2 + N2r∗ −N2r∗2

r∗2 + 2Nr∗2 + N2r∗2 = (N2 + N)r∗ + (−1− 2N −N2)r∗2

0 = (−2N2 − 4N − 2)r∗2 + (N2 + N)r∗

0 = −2(N + 1)2r∗2 + (N(N + 1))r∗ + 0

Now apply the quadratic formula:

r∗ =
−N(N + 1)+

√
(N(N + 1))2

2(−2(N + 1)2)

r∗ =
−2N(N + 1)

2(−2(N + 1)2)

r∗ =
N

2(N + 1)

As N →∞, r∗ → 1
2
; this is consistant with Fisherian sex ratios. Refer to book, page 12, on

discussions of interpreting the limit as N → 0.
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Exercise 2.1 (E)

Check that the units of q,k, and asymptotic size are correct.

The units of asymptotic size, dL
dt

:

Equation 2.10 gives us dW
dt

= 3ρL2 dL
dt

Since the units of dW
dt

are kg
day

then 3ρL2 d
dt

L has the same units.

ρ = kg
cm3

L2 = cm2

so dL
dt

has units cm
day

.

From dL
dt

= q − kl we know q has units cm
day

.

From q = σ
3ρ

we can verify the units of q.

Since σ = kg
day·cm2 and ρ = kg

cm3 , then q = kg
day·cm2

cm3

kg
= cm

day
.

Similarly with k:

From dL
dt

= q − kL, kL must be in units cm
day

.

Thus, k has the units 1
day

.

From k = c
3ρ

, c has units kg
day·cm , and ρ has the units kg

cm3 .

Thus, k has the units 1
day

.

For asymptotic size, L∞ = σ
c
, L∞ must have the units kg

day·cm2
day·cm3

kg
which simplifies to

cm. From our second equation dL
dt

= k(L∞ − L), L is in cm, thus L∞ is in cm as well.

Exercise 2.2 (M/H)

Show that the solution of Equation 1 with L(0) = L0 is L(t) = L∞(1 − exp(−kt)) +

L0 exp(−kt).

dL(t)

dt
=

c

3ρ
(
σ

c
− L(t)) = k(L∞ − L(t)) (1)

Separate the variables, L(t) and t.

dL(t)

dt
= k(L∞ − L(t))

dL

(L∞ − L)
= kdt
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Now integrate:

∫ dL

L∞ − L
= k

∫
dt

Use the following substitution:

u = L∞ − L

du = −dL

f ′(u) =
1

u
f(u) = ln u

This yields:

− ln(L∞ − L(t)) = kt + C

ln(L∞ − L(t)) = −kt + C

exp(ln(L∞ − L(t))) = exp(−kt + C)

L∞ − L(t) = C exp(−kt)

L(t) = L∞ − C exp(−kt) (2)

Initial condition L(0) = L0, t = 0

L(t) = L∞ − C exp(k(0)) = L0

C = L∞ − L0

substitute back into (2).

L(t) = L∞ − (L∞ − L0) exp(−kt)

L(t) = L∞ − L∞ exp(−kt) + L0 exp(−kt)

L(t) = L∞(1− exp(−kt)) + L0 exp(−kt)
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Exercise 2.3 (M)

The variables f and b are parameters, L(t) is length with respect to t, m is the rate of

perdation L0 is the initial time, k is growth, L∞ = σ
c
.

L(t) = L0 exp(−kt) + L∞(1− exp(−kt))

F (t) = exp(−mt)fL(t)b

Since f is a constant and we’re taking the derivative of F (t) then we can set f = 1 and

divide through by it.

Note: ‘for many organisms, initial size is so small relative to asymptotic size that we can

ignore initial size in our manipulations’(p.26). Therefore

L(t) = L∞(1− exp(−kt)) (3)

dL

dt
= L∞k exp(−kt) (4)

Take the derivative of F (t) and set equal to zero to optimize the function:

F ′(t) = −m exp(−mt)L(t)b + exp(−mt)bL(t)b−1dL

dt

Now set F ′(t) = 0

F ′(t) = 0 = exp(−mt)L(t)b(−m + bl(t)−1dL

dt
)

Divide through by exp(−mt)L(t)b, continue to solve for t.

m = bL(t)−1dL

dt

mL(t) = b
dL

dt
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Now substitute in our L(t) and dL
dt

[Equations 3 and 4] to continue solving for t.

mL∞(1− exp(−kt)) = bL∞k exp(−kt)

m−m exp(−kt)

exp(−kt)
=

bk exp(−kt)

exp(−kt)

m exp(−kt)−m = bk

exp(−kt) =
bk + m

m

t∗ =
1

k
ln(

bk + m

m
)

Exercise 2.4 (E/M)

Show that size at maturity is given by L(tm) = L∞( bk
m+bk

) = L∞( b
b+m

k
).

L(t) = L∞(1− exp(kt))

tm =
1

k
log(

m + bk

m
)

L(tm) = L∞(1− exp(k(
1

k
log(

m + bk

m
))))

= L∞[1− exp(−log(
m + bk

m
))]

= L∞(1− 1
m+bk

m

)

= L∞(
m + bk −m

m + bk
)

= L∞(
bk

m + bk
)

= L∞(
b

b + m
k

)

Exercise 2.5 (E)

dW

dt
= aW

3
4 − bW

set W = Hn then dW
dt

= nHn−1 dH
dt

.

dW

dt
= aH

3n
4 − bHn
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nHn−1 dH
dt

nHn−1
=

aH
3n
4 − bHn

nHn−1

dH

dt
= (aH

−n
4

+1 − bH)
1

n

if n = 4 then

dH

dt
=

1

4
(a− bH)∫ 1

a− bH
dH =

∫ 1

4
dt

− ln a− bH =
1

4
t + c

a− bH = exp(
−1

4
t + c)

−bH = exp(
−1

4
t + c)− a

H(t) =
exp

1
4
t+c−a

b

Put in initial value and return back to W .

H(0) = W (0)
1
4

To put the equation back in the form similar to the Von Bertalanffy equation of length, we

use n = 4 and write dH
dt

= 1
4
(a− bH).

Exercise 2.6 Temporal Variation (E/M)

Given

λ1 < 1

N(t) = λpt
1 λ

(1−p)t
2 N(0)

= (λp
1λ

1−p
2 )tN(0)

For the population to increase we need [λp
1λ

(1−p)
2 ]t > 1.

Assume

λp
1λ

(1−p)
2 > 1
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Then we can take the log and manipulate the inequality.

p log(λ1) + (1− p) log(λ2) > 0

(1− p) log(λ2) > −p log(λ1)

λ1−p
2 >

1

λp
1

λ1−p
2 > λ−p

1

λ2 > λ
−p

(1−p)

1

For a numerical example assume that the per capita growth rate for the poor habitat, λ1 is

set at 3
4
, and that the total fraction of poor habitat, p, is 1

2
. Thus the total fraction of good

habitat, λ2, would be 1− p = 1
2
.So for the population to increase the per capita growth rate

for the good habitat, λ2, would need to be greater than (3
4
)
−.5
1−.5 = 3

4

−1
= 4

3
.

Exercise 2.7 Logistic Equations (M)

dt(dN(t)
dt

)

N(t)(1− N(t)
K

)
=

rN(t)(1− N(t)
K

)dt

N(t)(1− N(t)
K

)

dN

N(1− N
K

)
= rdt

partial fraction decomposition:

1

N(1− N
K

)
=

A

N
+

B

1− N
K

1 = A(1− N

K
) + BN

1 = A− A

K
N + BN

0 ·N + 1 = A + N(B − 1

K
A)

→ A = 1, B − 1
K

A = 0, so B = 1
K

Integrate: ∫ 1

N
dN +

∫ 1

K −N
dN =

∫
rdt
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= ln N − ln(K −N) = rt + c

= ln(
N

K −N
) = rt + c

Initial conditions: t = 0 ⇒ N(t) = N(0)

ln(
N(0)

K −N(0)
) = c

Plug constant back in, and take the exponential of each side.

exp(ln(
N(0)

K −N(0)
)) = exp(rt + ln(

N(0)

K −N(0)
))

N(t)

K −N(t)
= exp(rt)

N(0)

K −N(0)

N(t) =
N(0)

K −N(0)
exp(rt)(K −N(t))

N(t) =
N(0)K exp(rt)

K −N(0)
− N(0) exp(rt)N(t)

K −N(0)

Now isolate and solve for N(t).

N(0) exp(rt)N(t)

K −N(0)
+

(K −N(0))N(t)

KN(0)
=

N(0)K exp(rt)

K −N(0)

N(t)[
K −N(0) + N(0) exp(rt)

K −N(0)
=

N(0)K exp(rt)

K −N(0)

N(t) =
K −N(0)

k −N(0) + N(0) + N(0) exp(rt)
· N(0)K exp(rt)

K −N(0)

Now simplify the equation, and rearrange the denominator:

N(t) =
N(0)K exp(rt)

K + N(0)(exp(rt)− 1)

Now we’ll check this result. As t →∞ then N(t) → K. This makes sense since as time goes

to infinity the population size will level off at its carrying capacity, K. At t = 0, then N(t)

will be equal to N(0) as it must be.
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Exercise 2.8 Ricker Map (E/M)

dN

dt
= limdt→0

N(t + dt)−N(t)

dt
= rN(t)(1− N(t)

K
)

Now let us ignore the limiting process in the previous equation, and simply set dt = 1. If we

do that then we can write

N(t + 1)−N(t) = rN(t)(1− N(t)

K
)

This equation is called the logistic map.

We can continue to switch N(t+1) to a different form by using N(t+1) = AN(t)fN(t), and

since we often set f(n) = exp(−bN) we obtain:

N(t + 1) = N(t) exp(r(1− N(t)

K
)) = N(t) exp(r) exp(−rN

K
)

N(t + 1) = AN(t) exp(−bN)

A = exp(r)

b =
r

K

a) fN(t) = exp(−bN), relationship between f and b is f = 1
exp(b)

.

b)Ricker Map N(t + 1) = AN(t) exp(−bN(t)) = AN(t) 1
exp(bN(t))

. N(t) can grow as large

as it wants since exp(bN(t)) > 1, therefore a
exp(bN(t))

> 1 and AN(t) 1
exp(bN(t))

so it will never

be less than zero unlike in the equation N(t+1) = N(t)+rN(t)(1− N(t)
K

) where if N(t) > K

then N(t + 1) could be less than N(t) and even negative.

c)A Taylor Expansion can be used to show the connection between the Ricker and Lo-

gistic Map. The Taylor Expansion of exp(x) =
∑∞

n=0
xn

n!
= 1 + x

1!
+ x2

2!
+ ....

The Ricker Map:

N(t + 1) = AN(t) exp(−bN(t))

N(t + 1) = AN(t)[1− bN(t) + ...]
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so that

N(t + 1) ≈ AN(t)(1− bN(t))

from equation 2.29 we know

N(t + 1) = (r + 1)N(t)− r

k
N(t)2

and the coefficients for the Logistic Map would be: A = r + 1, b = r
K

.

Exercise 2.9 (E)

Two dimensional equations and classification of steady states

Equations from 2.37 in the book:

dx

dt
= Ax + By (5)

dy

dt
= Cx + Dy (6)

So we begin by taking the second derivative with respect to x, and obtain:

d2x

dt2
= A

dx

dt
+ B

dy

dt

Next we substitute in dy
dt

= Cx + Dy and y = (dx
dt
− Ax)( 1

B
) obtained from Equation 5.

d2x

dt2
= A

dx

dt
+ B(Cx + Dy)

d2x

dt2
= A

dx

dt
+ B(Cx + D

1

B
)(

dx

dt
− Ax)

Now we consolidate the coefficients for x, dx
dt

, and d2x
dt2

.

d2x

dt2
= A

dx

dt
+ BC + BD

1

B
(
dx

dt
− Ax)
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= −d2x

dt2
+ A

dx

dt
+ BCx + D

dx

dt
− ADx

= −d2x

dt2
+ (A + D)

dx

dt
+ (BC −DA)x

=
d2x

dt2
− (A + D)

dx

dt
+ (DA−BC)x

Exercise 2.10 (E/M)

We know that

d2x1

dt2
− (A + D)

dx1

dt
+ (AD −BC)x1 = 0 (7)

d2x2

dt2
− (A + D)

dx2

dt
+ (AD −BC)x2 = 0 (8)

X(t) = ax1(t) + bx2(t) (9)

Where a and b are constants.

We need to show that

d2X

dt2
− (A + D)

dX

dt
+ (AD −BC)X = 0 (10)

So we begin by substituting Equation 9 into Equation 10.

d2(ax1 + bx2)

dt
− (A + D)

d(ax1 + bx2)

dt
+ (AD −BC)(ax1 + bx2)

Continue by consolidating variables and factoring out a and b from the variables.

d2ax1

dt2
+

d2bx2

dt2
− (A + D)(

dax1

dt
+

dbx2

dt
) + (AD −BC)(ax1 + bx2) = 0

0 =
ad2x1

dt
+

bd2x2

dt
−Aadx1

dt
−Abdx2

dt
−DAdx1

dt
−DBdx2

dt
+ADax1+ADbx2−BCax1−BCbx2

0 = a[
d2x1

dt
− ADx1

dt
− Ddx1

dt
+ ADx1 −BCx1] + b[

d2x2

dt
− ADx2

dt
− Ddx2

dt
+ ADx2 −BCx2]

By Equations 7 and 8, both terms in brackets are equivalent 0. Therefore X(t) is a solution.

Exercise 2.11 (M)

Show that if λ is a solution of λ = (
(A+D)+

√
(A−D)2+4BC

2
) and that if we set u = B and

v = λ− A that Equations 11 and 12 are satisfied.
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(a− λ)u + Bv = 0 (11)

Cu + (D − λ)v = 0 (12)

Substitute in u, v.

In equation 11, −vu + uv = 0; the equation is satisfied.

For equation 12;

CB + (D − λ)(λ− A) = 0

CB + Dλ−DA− λ2 + Aλ = 0

−λ2 + (A + D)λ−DA + CB = 0

λ2 − (A + D)λ + (DA− CB) = 0

This is in the form of the characteristic polynomial satisfying x =
b+

√
b2−4ac

2a
. So a = 1,

b = A + D, c = DA− CB.

Therefore

λ =
(A + D)+

√
(A + D)2 − 4(AD −BC)

2

=
(A + D)+

√
(A + D)2 − 4BC

2
(13)

Thus Equation 12 is satisfied.

Exercise 2.12 (M-H)

dV

dt
= rV (1− V

K
)− bV P

dP

dt
= cV P −mP

Converting to per capita growth rates we have

dV

dt

1

V
= r(1− V

K
)− bP

dP

dt

1

P
= cV −m
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a)units of parameters

r = 1
time

, 1
years

V=number of prey

K=number of prey, carrying capacity

P=number of predators

b=years−1number of predators−1

c = ( 1
time

)( 1
prey

)

m = 1
time

dV
dt

= prey
time

dP
dt

= predators
time

b)The differential equation describing prey’s population levels includes what the popula-

tion would be without the presence of predetors, contingent on the carrying capacity minus

the encounter rate with predators and how many predators there are. Similarly with the

predator quation, their population is contingent on the number of prey available and how

often the predators encounter prey minus their populations natural mortality rate.

The c, b relationship:

(rate at which prey disappear)/(rate at which predators appear) = bPV
cPV

= b
c
. b

c
is the number

of prey needed to ‘make’ a predator.

c) isocline analysis: solve for dV
dt

= dP
dt

= 0

dV

dt
= V (r(1− V

K
)− bP )

If dV
dt

= 0 either V = 0, or:

r(1− V

K
)− bP = 0

P =
r

b
(1− V

K
)

Therefor the y-intercept is r
b
, and the x-intercept is K.
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Figure 2. Isocline Analysis when dV
dt

= 0

Second steady state:

dP

dt
= cPV −mP = 0

If dP
dt

= 0 either P = 0, or:

V =
m

c
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Figure 3. Isocline Analysis when dP
dt

= 0. The steady state is (m
c
, P ).

There are two cases for the isocline analysis depending on the relationship between K and
m
c
.
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Figure 4. First steady state where m
c

> K. This case leads to the extinction of the

predators.
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Figure 5. Second steady state where m
c

< K. This scenerio leads to predator-prey cycles.

d)Classify the steady states

f(V, P ) = rV (1− V

K
)− bPV

g(V, P ) = cPV −mP

The partial derivatives of the functions f and g are:

fV = r − 2rV

K
− bP

fP = −bV

gV = cP

gP = cV −m

The Jacobian is:

J(V, P ) =

 r − 2rV
K
− bP −bV

cP cV −m



J(V, P ) =

 r − 2rV
K
− bP −bV

cP cV −m



At the steady state (m
c
, r

b
(1−

m
c

K
)).

J(
m

c
,
r

b
(1−

m
c

K
)) =

 r − 2r m
c

K
− b r

b
(1−

m
c

K
) −bm

c

c r
b
(1−

m
c

K
) cm

c
−m



J(
m

c
,
r

b
(1−

m
c

K
)) =

 r − 2r m
c

K
− r(1−

m
c

K
) −bm

c

c( r
b
(1−

m
c

K
) 0
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First Analysis: Let K →∞, K > m
c

then
2r m

c

K
→ 0, and

m
c

K
→ 0 then

J(
m

c
,
r

b
) =

 r − r −bm
c

cr
b

0



J(
m

c
,
r

b
) =

 0 −bm
c

cr
b

0



Eigenvalues are roots of the characteristic equation.

λ1,2 =
(A+D)+

√
(A+D)2+4BC

2

A = 0

B =
−bm

c

C =
cr

b
D = 0

λ1,2 =
+

√
−4

bm

c
· cr

b
=

+√−4mr

Values under the radical tell us about the oscillations about the steady state. λ1,2 is purely

complex if K → ∞. λ becomes purely imaginary and pertubations from the steady states

lead to oscillations of the population values.

Second Analysis:

J(
m

c
,
r

b
(1−

m
c

K
)) =

 r − 2r m
c

K
− b r

b
(1−

m
c

K
) −bm

c

c r
b
(1−

m
c

K
) cm

c
−m



J(
m

c
,
r

b
(1−

m
c

K
)) =

 − r m
c

K
bmK
cK

cr
b
(1−

m
c

K
) 0
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input into standard equation:

λ =
−rm

cK

+
√

(
−rm

cK
)2 + 4(

−bmK

cK
)(

cr

b
)(1−

m
c

K
)

The (−rm
cK

)2 shows that the steady state will be stable.

If m
c

> K → (1−
m
c

K
) < 0

If m
c

< K → (1−
m
c

K
) > 0

We need K > m
c

for the predators to persist. Thus 1−
m
c

K
> 0 always.

The eigenvalues are real if

(
rm

ck
)2 > 4(

−bmK

cK
)(

cr

b
)(1−

m
c

K
)

rm

(ck)2
> 2

√
1−

m
c

K

rm > 2(ck)2

√
1−

m
c

K

r > 2(ck)2

√
1−

m
c

K

Otherwise, the eigenvalues are complex.

What do the eigenvalues tell us that the isocline analysis doesn’t?

We can see the oscillation but not the stable steady state.

e) What happens to the eigen values as K goes to ∞?

Discussed above before the Second Analysis.

Exercise 2.13 (M)

Show that

p(x, t) =
1√

2πσ2t
exp(

−(x− vt)2

2σ2t
) (14)

is a solution to
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pt = −vpx +
σ2

2
pxx (15)

Part 1: To begin let’s solve pt,
dp(x,t)

dt
, from Equation 14. Let p(x, t) = c(t) exp(u(x, t)) where

c(t) = 1√
2σ2t

and u(x, t) = −(x−vt)2

2σ2t
.

Then

pt =
dc

dt
exp(u) + c(t)

du

dt
exp(u)

Now we’ll solve dc
dt

, and du
dt

so we can plug them into our pt equation and then compare it to

Equation 15.

dc

dt
= −1

2

1√
2πσ2

· t
−3
2

du

dt
=

2(x− vt)v(2σ2t) + 2σ2(x− vt)2

(2σ2t)2

Therefore

pt = −1

2

1√
2πσ2

·t
−3
2 ·exp(

−(x− vt)2

2σ2t
)2)+

1

2σ2t
·2(x− vt)v(2σ2t) + 2σ2(x− vt)2

(2σ2t)2
·exp(

−(x− vt)2

2σ2t
)

Simplifying we obtain:

pt =
−v(−2(x− vt) exp(u)(2σ2t))− σ2 exp(u)(2σ2t) + 2σ2(x− vt)2 exp(u)

(2πσ2t)
1
2 (2σ2t)2

Part 2: Now we evaluate pt from Equation 15 and compare it to our last answer.

Since pt = −vpx + σ2

2
pxx, we will solve for px and pxx and plug them back into our equation.

px = c(t)ux exp(u)

pxx = c(t)[uxx exp(u) + u2
x exp(u)]

Now we solve for ux, uxx, and u2
x to complete our px and pxx equations.

ux =
−2(x− vt)

2σ2t

uxx =
−2

2σ2t

(ux)
2 = (

−2(x− vt)

2σ2t
)2
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Now plug those back into the px and pxx equations and obtain:

px =
1√
2σ2t

· −2(x− vt)

2σ2t
· exp(

−(x− vt)2

2σ2t
)

pxx =
1√
2σ2t

[
−2

2σ2t
· exp(

−(x− vt)2

2σ2t
) + (

−2(x− vt)

2σ2t
)2 · exp(

−(x− vt)2

2σ2t
)]

Now putting the previous equations into Equation 15 we obtain:

pt = −v
1√
2σ2t

· −2(x− vt)

2σ2t
· exp(

−(x− vt)2

2σ2t
) +

σ2

2

1√
2σ2t

[
−2

2σ2t
· exp(

−(x− vt)2

2σ2t
) + (

−2(x− vt)

2σ2t
)2 · exp(

−(x− vt)2

2σ2t
)]

Simplifying we obtain:

pt =
−v(−2(x− vt) exp(u)(2σ2t))− σ2 exp(u)(2σ2t) + 2σ2(x− vt)2 exp(u)

(2πσ2t)
1
2 (2σ2t)2

(16)

This is the same as out pt obtained from Part 1. Therefore p(x, t) = 1√
2πσ2t

exp(−(x−vt)2

2σ2t
) is

a solution to pt = −vpx + σ2

2
pxx.

Exercise 3.1 (E)

What are the associated zk and pk when the fair die is thrown twice and the results summed?

For the discrete random variable Z that can take a set of values {zk} we introduce probabli-

tilties pk defined by Pr{Z = zk} = pk. So pk =the number of ways to get outcome k over

the total number of outcomes, 36.

Sample Calculation:

For z6 = 7, Since 7 = 1+6, 2+5, 3+4, 4+3, 5+2, 6+1 there are six possible ways to obtain z6.

z1 = 2, p = 1
36

z2 = 3, p2 = 2
36

z3 = 4, p3 = 3
36

z4 = 5, p4 = 4
36

z5 = 6, p5 = 5
36
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z6 = 7, p6 = 6
36

z7 = 8, p7 = 5
36

z8 = 9, p8 = 4
36

z9 = 10, p9 = 3
36

z10 = 11, p10 = 2
36

z11 = 12, p11 = 1
36
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Figure 6. Probability Distribution Function of Die Thrown Twice
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Exercise 3.2 (E)

Pr{Z ≤ z}, Z is the sum of two die.

Pr{Z ≤ z} =
∑K(z)

k=1 pk, where K(z)=the value of k so that the sum is less that or equal to

z.

Example Calculation

Pr{Z ≤ 3} =
∑K(3)

k=1 pk = p1 + p2 = 1
36

+ 2
36

= 3
36

Pr{Z < 2} = 0

Pr{Z ≤ 2} =
K(2)∑
k=1

=
1

36

Pr{Z ≤ 3} =
K(3)∑
k=1

=
3

36

Pr{Z ≤ 4} =
K(4)∑
k=1

=
6

36

Pr{Z ≤ 5} =
K(5)∑
k=1

=
10

36

Pr{Z ≤ 6} =
K(6)∑
k=1

=
15

36

Pr{Z ≤ 7} =
K(7)∑
k=1

=
21

36

Pr{Z ≤ 8} =
K(8)∑
k=1

=
26

36

Pr{Z ≤ 9} =
K(9)∑
k=1

=
30

36

Pr{Z ≤ 10} =
K(10)∑
k=1

=
33

36

Pr{Z ≤ 11} =
K(11)∑
k=1

=
35

36

Pr{Z ≤ 12} =
K(12)∑
k=1

=
36

36

Pr{Z > 12} = 0
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Exercise 3.3 (E)

For a continuous random variable, the variance is V ar{Z} =
∫

(z − E{Z})2f(z)dz. Show

that an equivalent definition of variance is V ar{Z} = E{Z2} − E2{Z} where we define

E{Z2} =
∫

z2f(z)dz.

V ar{Z} =
∫

(z − E{Z})2f(z)dz

=
∫

(z2 − 2zE{Z}+ E2{Z})f(z)dz

=
∫

z2f(z)dz − 2E{Z}
∫

zf(z)dz + E2{Z}

= E{Z2} − 2E{Z}E{Z} − E2{Z}
= E{Z2} − 2E2{Z}+ E2{Z}

= E{Z2} − E2{Z}

Exercise 3.4 (E)

Friend’s inspection Exercise:

One of my friends, Tracy, is another math major. When asked to identify the most variable

series she chose series C. For the least variable she guessed series B.

The other person I asked was the librarian at the science library, named Barb. She was

less than thrilled to examine the numbers, but when she did she guessed the following:

Most variable series- series B.

Least variable- series A.

Now for the actual calculations!

Series A

45, 32, 12, 23, 26, 27, 39

Mean= 45+32+12+23+26+27+39
7

= 29.14

Variance= (45−29)2+(32−29)2+(12−29)2+(23−29)2+(26−29)2+(27−29)2+(39−29)2

7
= 100

Standard Deviation=
√

V ar(Z) =
√

100 = 10

Coefficient of variation= 10
29

= .34

Series B

1401, 1388, 1368, 1379, 1382, 1383, 1395

Mean= 1401+1388+1368+1379+1382+1383+1395
7

= 1, 385
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Variance= (1401−1385)2+(1388−1385)2+(1368−1385)2+(1379−1385)2+(1382−1385)2+(1383−1385)2+(1395−1385)2

7
=

100

Standard Deviation= 10

Coefficient of Variation= 10
1385

= .007

Series C

225, 160, 50, 115, 130, 135, 195

Mean= 225+160+50+115+130+135+195
7

= 144

Variance= (225−144)2+(160−144)2+(50−144)2+(115−144)2+(130−144)2+(135−144)2+(195−144)2

7
= 2, 767

Standard Deviation=
√

2767 = 52

Coefficient of Variation= 52
144

= .36

By inspection it is not at all clear that the series A and B would have an identical standard

deviation and variance since the numbers in series B are so much greater than in A. The

standard deviation looks small relative to B. It is also interesting to note that the coefficient

of variations is similar in series A and C. So their dispersion of a probability distribution is

nearly equal.

Exercise 3.5 (M)

Show that

V ar{K} = Np(1− p)

Since

V ar{K} = E{K2} − (E{K})2 (17)

and we already know that

E{K}2 = Np (18)

Then we’ll continue by solving for E{K2}.

E{K2} =
N∑

k=0

k2

 N

K

 pk(1− p)N−k

30



To process one factor of k with j = k − 1, use the same method used to obtain the mean.

E{K2} = Np
N−1∑
j=0

k

 N

K

 pj(1− p)N−k

= Np
N−1∑
j=0

(j + 1)pj(1− p)N−1−j

split the sum:

= Np(
N−1∑
j=0

j

 N − 1

j

 pj(1− p)N−1−j +
N−1∑
j=0

 N − 1

j

 pj(1− p)N−1−j)

then let m = N − 1

= Np(
m∑

j=0

j

 m

j

 pj(1− p)m−j +
m∑

j=0

 m

j

 pj(1− p)m−j)

the first sum is equal to mp, the second sum is equal to 1.

E{K2} = Np(mp + 1)

Now substitute back in N − 1 for m.

= Np((N − 1)p + 1)

= Np(Np− p + 1)

= (Np)2 −Np2 + Np (19)

Going back to our initial equation, Equation 17, we plug in Equation 18 and 19 to obtain:

V ar{K} = (Np)2 −Np2 + Np− (Np)2

= Np(p− 1)
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Exercise 3.6 (E)

Show that Pr{K=k+1}
Pr{K=k} = (N−k)p

(k+1)(1−p)

.

From 3.22 we know

Pr{K = k} =
N !

k!(N − k)!
pk(1− p)N−k

=
N !pk(1− p)N

k!(N − k)!(1− p)k

=
N !pk(1− p)N

k!(N − k)(N − k − 1)!(1− p)k

and we also know that

Pr{K = K + 1} =
N !pk+1(1− p)N

(k + 1)!(N − (k + 1))!(1− p)k+1

=
N !pkp(1− p)N

(k + 1)!k(N − (k + 1))!(1− p)k(1− p)

so that

Pr{K = k + 1}
Pr{K = k}

=
p(N − k)

(k + 1)(1− p)

Exercise 3.7 (E)

Show that the MLE for p is p̂ = k
N

.

L(p|k,N) = log(
N

k
) + klog(p) + (N − k)log(1− p)

dL

dp
= k(

1

p
) + (N − k)(

1

1− p
)(−1)
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Set dL
dp

= 0 and solve for p̂.

0 =
k

p
− N − k

1− p

0 =
k − pk − pN + pk

1− p
0 = k − pk − pN + pk

−k

−N
= p

p̂ =
k

N

Exercise 3.8 (E)

Show that setting L̂(N+1|k,p)

L̂(N |k,p)
= 1 leads to the equation (N+1)(1−p)

N+1−k
= 1. Solve this equation for

N to obtain N̂ = k
p
− 1. Does this accord with your intuition?

We know that

L̂(N + 1|k, p) =
(N + 1)!pk(1− p)(N+1)−k

k!(N − 1− k)!

=
(N + 1)N !pk(1− p)N(1− p)

k!(N + 1− k)(N − k)!(1− p)k

= L̂(N |k, p) =
N !pk(1− p)N−k

k!(N − k)!

=
N !pk(1− p)N

k!(N − k)!(1− p)k

So that

L̂(N + 1|k, p)

L̂(N |k, p)
= 1 =

(N + 1)(1− p)

N + 1− k

(N + 1)(1− p) = N + 1− k

−1(N −Np + 1− p) = N + 1− k

Np + p = k

p(N + 1) = k
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N + 1 =
k

p

N̂ =
k

p
− 1

Does this accord with your intuition?

Yes. For example if someone is flipping a coin and gets 10 heads then it’s likely that they

threw the dice 20 times.

Exercise 3.9 (M)

The probabity of having k events in t to t + dt is the sum of having either k − 1 events in

time 0 to t and 1 event in time t to t + dt or k events in time 0 to t and none in time t to

t + dt. Since they are mutually exlusive events we can write them as

Pk(t + dt) = Pk−1λdt + Pk(t)(1− λdt) + o(dt)

We obtain the general equation by solving for dPk

dt
.

Pk(t + dt)− Pk(t) = Pk−1(t)dt + o(dt)− λPk(t)dt

Pk(t + dt)− Pk(t)

dt
= λPk−1(t)− λPk(t) +

o(dt)

dt

let dt → 0

dPk

dt
= λPk−1(t)− λPk(t) (20)

Show that the solution of equation is Pk(t) = (λt)k

k!
exp(−λt)

Start by evaluating λPk−1(t)

λPk−1(t) = λ
(λk)k−1 exp(−λt)

(k − 1)!
=

λktk−1 exp(−λt)

(k − 1)!

λPk(t) = λ
(λk)k exp(−λt)

k!
=

λk+1tk exp(−λt)

k!
=

λk+1tk exp(−λt)

k(k − 1)!
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Thus

λPk−1(t) + λPk(t) =
kλktk−1 exp(−λt)

k(k − 1)!
− λkλtk exp(−λt)

k(k + 1)!

=
λktk exp(−λt)(kt−1 − λ)

k!

Now solve for dPk

dt
:

dPk

dt
=

λk

k!

d

dt
tk exp(−λt)

=
λk

k!
(ktk−1 exp(−λt) + tk(−λ) exp(−λt))

=
λk

k!
(ktk−1 exp(−λt)− tkλ exp(−λt))

=
λkktkt−1 exp(−λt)− tkλkλ exp(−λt)

k!

=
λktk exp(−λt)(kt−1 − λ)

k!

Thus Pk(t) = (λt)k

k!
exp(−λt) is the solution to Equation 20.

Exercise 3.10 (E)

Show that pk(t)
pk−1(t)

> 1 implies λt > k.

By equation 3.40 we know pk(t) = λt
k
pk−1(t). So the ratio pk(t)

pk−1(t)
= 1

λt
k

.

So since 1
λt
k

> 1 then 1 > k
λt

, thus λt > k.

Exercise 3.11 (E)

L(λ|k, t) = −λt + klog(λt)− log(k!) = −λt + klog(λ) + klog(t)− log(k!)

Show the MLE is λ̂ = k
t

dL

dλ
= −t +

k

λ

Now set dL
dλ

= 0 and solve for λ̂.
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−t +
k

λ
= 0

k

λ
= t

k =
t

λ

λ̂ =
k

t

Exercise 3.12 (E/M)

Show that E{Λ2} = ν(ν+1)
α2

E{Λ2} =
∫ α

0
λ2 αν

Γ(ν)
exp(−αλ)λν−1dt

=
αν

Γ(ν)

∫
exp(−αλ)λν+1dt

=
λν

Γ(ν)

Γ(ν + 2)

αν+2
=

ανΓ(ν + 2)

ανα2Γ(ν)

Since

Γ(ν + 1) = (ν + 1)νΓ(ν)

Then E{Λ2} will be

=
ν(ν + 1)

α2
=

ν2 + ν

α2

From exercise 3.3 we know V ar{Λ} = E{Λ2}− (E{Λ})2. Also from Equation 3.56 we know

that E{Λ} = v
α
. Thus

V ar{Λ} =
ν2 + ν

α2
− (

ν

α
)2 =

ν2 + ν − ν2

α2
=

ν

α2

ν

α2
=

1

ν

ν2

α2
=

1

ν
(E{Λ})2
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Exercise 3.13 (E)

Interpretation of results of the graph ’Probability of No Events’, with k = .01, .1, 1, 2, 10:

The negative binomial distribution becomes more and more skewed as the dispersion param-

eter decreases. For k = .1 there is more than a 60% chance of zero events, even though the

mean is about 10. Wow!

Exercise 3.14 (E)

X is normally distributed with mean 0 and variance 1. f(x) = 1√
2π

exp(−x2

2
)
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Transformation X = Y−µ
σ

. For transformation the Jacobian is dx
dy

Y−µ
σ

= 1
σ
.

f(X) = (
1√
2π

exp(−(
Y − µ

σ
)2))

1

σ
=

1√
2π

σ exp(
(−Y − u)2

2σ2
)

Exercise 3.15 (E)

Show that SSQ(m) is minimized when m is the sample 1
n

∑n
i=1 Yi.

SSQ(m) =
∑n

i=1(Yi −m)2

To minimize SSQ(m) we’ll take the derivative, set it equal to 0, and solve for m.

If we write out the sum we get:

n∑
i=1

(Yi −m)2 = (y1 −m)2 + (y2 −m)2 + (y3 −m)2 + .. + (yn −m)2

Take the derivative with respect to m:

d

dm
[(y1 −m)2 + (y2 −m)2 + (y3 −m)2 + ... + (yn −m)2] = 0

−2(y1 −m)− 2(y2 −m)− 2(y3 −m) + ...− 2(yn −m) = 0

Now go back to the summation form and solve for m.

2nm− 2(
∑

yi) = 0

nm−
∑

yi = 0

m =
1

n

∑
yi

Exercise 3.16 (E/M)

SSQ(a, b) =
∑N

i=1(Yi − a− bXi)
2

The derivative with respect to a:
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d

da
[

N∑
i=1

(Yi − a− bXi)
2] =

=
d

da
[(Y1 − a− bX1)

2 + (Y2 − a− bX2)
2 + (Y3 − a− bX3)

2 + ... + (Yn − a− bXn)2]

= −2(Y1 − a− bX1)− 2(Y2 − a− bX2)− 2(Y3 − a− bX3) + ...− 2(Yn − a− bXn)

= 2na− 2(
N∑

i=1

Yi) + 2b(
N∑

i=1

Xi)

Now we set d
da

SSQ = 0 for a and obtain:

a =
2(

∑N
i=1 Yi)− 2b(

∑N
i=1 Xi)

2n

â =
1

n
(

N∑
i=1

Yi − b
N∑

i=1

Xi)

Now for the derivative with respect to b:

d

db
SSQ[

N∑
i=1

(Yi − a− bXi)
2] =

d

db
[(Y1 − a− bX1)

2 + (Y2 − a− bX2)
2 + (Y3 − a− bX3)

2 + ... + (Yn − a− bXn)2]

d

db
SSQ = −2X1(Y1 − a− bX1)− 2X2(Y2 − a− bX2)− 2X3(Y3 − a− bX3) + ...− 2Xn(Yn − a− bXn)

d

db
SSQ = −2n

N∑
i=1

XiYi + 2na
n∑

i=1

Xi − 2nb
n∑

i=1

X2
i

Now we set d
db

SSQ = 0 for b and obtain:

2nb
N∑

i=1

X2
i = 2n

N∑
i=1

XiYi − 2na
N∑

i=1

Xi

b =
2n

∑N
i=1 XiYi − 2na

∑N
i=1 Xi

2n
∑N

i=1 X2
i

b̂ =

∑N
i=1 XiYi − a

∑N
i=1 Xi∑N

i=1 X2
i
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Exercise 3.17 (E)

Show that if Y is defined by Y = A exp(σX − 1
2
σ2), then E{Y } = A and V ar{A} =

A2(exp(σ2)− 1). Use equation 3.9 to find the expected value:

Z = A exp(σX)

E{Z} = A exp(
σ2

2
) (21)

E{Z2} = A2E{exp(2σX)}
= A2 exp(2σ2)

Y = Z exp(−1

2
σ2)

E{Y } = E{Z exp(−1

2
σ2)}

= exp(−1

2
σ2)E{Z}

By equation 21 then

exp(−1

2
σ2)E{Z} = A,

So

E{Z} = A exp(
1

2
σ2)

and

E{Y } = A

To find the variance we recall that V ar{Y } = E{Y 2} − E{Y }2.

E{Y 2} = E{Z2 exp(−σ2)}
= exp(−σ2)E{Z2} = A2 exp(σ2)
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So then variance will be

V ar{Y } = A2 exp(σ2)− A2

= A2(exp(σ2)− 1)

Exercise 3.18 (E/M)

f0(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− P )β−1

=
1

β(α, β)pα−1(1− P )β−1

Data: s successful searches in a attempts

f(p|(s, a)) =

 a

s

 ps(1− p)a−sf0(p)

∫ 1
0

 a

s

 ps(1− p)a−sf0(p)dp

This is Bayes Theorem. We can simplify and write.

f(p|(s, a)) =
ps(1− p)a−s∫ 1

0 ps(1− p)a−sdp

The denominator can be written in terms of the beta function.

B(s, a) =
∫ 1

0
ps−1(1− p)a−β−1dp

B(s + 1, a + 1) =
∫ 1

0
ps(1− p)a−sdp

f(p|(s, a)) =
ps(1− p)a−s

β(s + 1, a− s + 1)

41



posterior probability

1

β(α, β)β(s + 1, a− s + 1)
pspα−1(1− p)a−s(1− p)β−1

= pα+s−1(1− p)α+β−s−1

α ⇒ α + s

β ⇒ α + β − s

The new parameters are α + s, α + β − s.
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