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The Theoretical Biologist’s Toolbox
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with Marc. This set contains solutions to Chapters 1 through 3.



Exercise 1.1 (E)

The two prey diet choice problem- Show that the rate of flow of energy for a forager when
they generalize and eat either prey upon encounter is Rg = % T is the total
time, H is the handeling time, and S is the time spent searching. FE is the energy gain, and

A is the rate that prey are encountered by the predator.

T =8+ H, + H

T - S + h1>\15 + hz)\gs

T = S(1 4 hi); + hos)
T

1+ hidi + hado
E\ )\ + Ey )

(1 + hl)\l + h2/\2>

S:

Rg =

Exercise 1.2 (E)
Show that R > R, implies that \; > ﬁ
Since we know
E
P-TY
14+ N

and

. E\ ) + Ey )
T 1 A+ ho)g

then by our given

Ei\ S B\ + Es)g
1+ hl)\l 1+ hl)\l + hz)\g

Then we solve for \;:

El)\l(l -+ hl)\l + hz)\z) > (El)\l + EQ)\Q)(l -+ hl)\l)
E1>\1)\2h2 — Eg)q)\ghl > EQ)\Q



M (E1Aohe — Eodohy) > Ea)g
E2>\2
E1>\2h2 - E2)\2h1
Es
Elhg — E2h1

AL >

/\1>

Exercise 1.3 (E)

The gain function, G(t), describes the energetic value of food removed by a forager for resi-

dence time, t. Two possible forms for the gain function are G;(t) = ﬁ and Gy(t) = (b‘jf;).
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Figure 1. Gain Functions versus Time.



The function G5(t) describes some kind of initial slowing of the energy gain prior to an
inflection point and then experiences a smooth increase until it flattens out implying there is
some factor associated with the foraging spot that hinders the organism from gaining energy

at a uniform rate.

Variables

Possible values for variables a, b are foraging costs and food abundance in the patches. Note
that the same constants (a and b) are used in the expression, but they have different mean-
ings. Since we’ll be measuring gain in energy units, kilocalories, this implies that b will
be in units of time, minutes in G(t) and minutes® in Gy(t).Variable a will be in units of

energy, kilocalories in G1(t) and kilocalories in Ga(t).

Exercise 1.4 (M)
Show that based on R(g,z) = £,S(x) = (1 — cz~") the optimizing value of x is (c(a + 1))a.
9

R(z) = 5(1 —cx™?)

gR(z) = (1 - cr ™)

—a—1

gR(z) =a' —cx

Now we’re going to find the derivative of R and set it equal to 0 and solve for x.

gR () = -2 2+ cla+ 127" 2 =0

cla+ 1)z 2 2
r—a—2 ::x—a—Q
cla+1)=z"
x =cla+ 1)é

Exercise 1.5- Unbeatable Sex Ratio (M)

W (r,r*)=the fitness depending on upon the sex ratio r that the mutant female uses and the
sex ratio r* that other females use.

E=eggs

r* =normal individual’s fraction of sons

r =mutant individual’s fraction of sons

W(r,r*) = E*(1 —r)+ E*[(1 —7) + N(1 —r%) ]

r+ Nr*



W (r,r*)
2

r(l—r) rN(1—1%)

= (1—
( T)+T+NT* r+ Nr*

Now take the derivative with respect to r and set the equation equal to zero.

d d r—r? d r

0=21-r+ 2 N1 - )L
dr( T)+dr(r—|—N7’*)+ ( r)dT<T—0—N7”*>
(r+Nr*)—r 2r(r+ Nr*) —r? o (r+ Nr¥)—r
0=-1 - N — )
+ (r+ Nr)? (r 4+ Nr*)? + N ( ") (r+ Nr*)?2

Now substitute r = r*, since W (r,r*) is maximized at this point

(r* + Nr*) —r*  2r*(r* + Nr*) — r*? r* 4+ Nr* —r*
0=—1 _ N — ) AT T
* (r* 4+ Nr*)? (r* 4+ Nr*)? N =) (r* 4+ Nr*)?
0= 1+ Nr 2 (r 4+ Nrt) = +N27’*(1—r*)
- (T*2 + NT*2)2 (T’* + N’I“*)Z (,r.* + NT*)2
- Nr* —2r*2 —2N7*2 + 72 + N2p*(1 — 1¥)
- (r*+ Nr*)?

(r* + Nr*)? = Nr* — 272 — 2N7*? 4 7*2 4 N?p* — N?p*2
2 4 2N 4 N2r*2 = (N? + N)r* + (=1 — 2N — N?)r*?
0= (—2N? —4N —2)7*? + (N? + N)r*
0=—2(N+1)>r** + (N(N +1))r* +0
Now apply the quadratic formula:
—N(N +1)£,/(N(N +1))?
2(—=2(N +1)?)
., —2N(N +1)
—2(—2(N +1)2)

N
2(N + 1)

r* =

r* =

As N — oo, r* — %; this is consistant with Fisherian sex ratios. Refer to book, page 12, on

discussions of interpreting the limit as N — 0.



Exercise 2.1 (E)
Check that the units of q,k, and asymptotic size are correct.

drL .

The units of asymptotic size, 7

Equation 2.10 glves us 4F = 3pL2 dL

Since the units of ¢ dt are -+ then 3,0L2 [, has the same units.
— kg

P = em3

L? = cm?

SO dL has units ;ﬂ

dL
dt

From ¢ = & we can verify the units of q.

From = q — kl we know q has units 2

. 3
Since o = Jay-oi? and p = C’:n—%, then ¢ = dayk.gw CZ; = %.
Similarly with k:
From =q— kL, kL must be in units < day
Thus, k has the units 5 -
From k = 3 , ¢ has unlts , and p has the units —%

Thus, k has the units Wy‘

kg  day-cm?
day-cm? kg

cm. From our second equatlon = k(Lo — L), L is in em, thus Ly is in em as well.

For asymptotic size, Lo, = 2, L must have the units which simplifies to

Exercise 2.2 (M/H)
Show that the solution of Equation 1 with L(0) = Lo is L(t) = Lw(1 — exp(—kt)) +
Ly exp(—kt).

dL(t) ¢ o

i~ 3,0~ LO) = k(Lo = L(1)) (1)

Separate the variables, L(t) and ¢.

aL(t) _
7 k(Lo — L(2))
dL
Tw—1) = kdt



Now integrate:

Use the following substitution:

=L —L
du = —dL
)=
o

f(u) =Inu

This yields:

—In(Lo — L(t)) =kt + C

In(Loo — L(t)) = =kt + C
exp(In(Lo, — L(t))) = exp(—kt + C)
Lo, — L(t) = Cexp(—kt)

L(t) = Lo — C exp(—kt)

Initial condition L(0) = Lo, t =0

L(t) = Lo, — C'exp(k(0)) = Ly
C =1L —Ly

substitute back into (2).
L(t) = Loo — (Loo — Lo) exp(—Fkt)
L(t) = Lo — Lo exp(—kt) + Lg exp(—Fkt)
L(t) = Loo(1 — exp(—kt)) + Lo exp(—kt)



Exercise 2.3 (M)

The variables f and b are parameters, L(t) is length with respect to ¢, m is the rate of

perdation L is the initial time, k is growth, Lo, = 2.

L(t) = Loexp(—kt) + Loo(1 — exp(—kt))
F(t) = exp(—mt) fL(t)"

Since f is a constant and we're taking the derivative of F'(t) then we can set f = 1 and

divide through by it.

Note: ‘for many organisms, initial size is so small relative to asymptotic size that we can

ignore initial size in our manipulations’(p.26). Therefore

L(t) = Loo(1 — exp(—kt))
dL

o= Lok exp(—kt)

Take the derivative of F'(t) and set equal to zero to optimize the function:

p—1dL

F'(t) = —mexp(—mt)L(t)" + exp(—mt)bL(t) 7

Now set F'(t) =0

F'(t) = 0 = exp(—mt) L()"(—m + bz(t)lccllf)

Divide through by exp(—mt)L(t)°, continue to solve for .

dL
=bL(t)"'—
m=bL(t)" —

dL
L(t) =b—
mL(t) =b—

(3)
(4)



Now substitute in our L(¢) and % [Equations 3 and 4] to continue solving for ¢.

MLy (1 —exp(—kt)) = bLook exp(—kt)

m —mexp(—kt)  bkexp(—Fkt)
exp(—kt) ~ exp(—kt)

mexp(—kt) —m = bk

bk +m

exp(—kt) =

1. bk+m
tr = -1
kn< m

)

Exercise 2.4 (E/M)
Show that size at maturity is given by L(t,,) = Lw(%) = Leo (55 )-
k

1 m + bk
t, = —1
m = 7 log(———)
1 m + bk
L(tm) = Loo(1 — exp(k(--log( p- )
m + bk
— Loo[1 — exp(—
[1 — exp(—log( p- )]
1
= Loo(1 m+bk)
m + bk —m
— L.
( m + bk )
bk
_ LOO
(m—i-bk)
b
L
)
Exercise 2.5 (E)
aw = aWi — bW
dt
set W = H" then % = nH”_l%.
WV % pmn



an—l an—l
dH 1
E = (CLH 4 bH)ﬁ
if n = 4 then
dH 1
o Z(a—bH
g gl b
1

1
—lna—bH:ZtJrc
—1
a—bH:eXp(Tt+c)
—1
—bH:exp(Tt—i-c) —a
+c __

Ly
expi

H(t) = = ¢

Put in initial value and return back to W.

To put the equation back in the form similar to the Von Bertalanffy equation of length, we

use n =4 and write 4 = 1(a — bH).

Exercise 2.6 Temporal Variation (E/M)

Given

)\1 <1
N(t) = XA N (0)
= (A7) N(0)

For the population to increase we need [A} AL P> 1.

Assume

ML >

10



Then we can take the log and manipulate the inequality.

plog(A1) + (1 — p)log(A2) >0
(1 —p)log(A2) > —plog(A1)
1
1—
AZ p > )\7]13
Ay P> AP

—p
)\2 > )\1(1717)

For a numerical example assume that the per capita growth rate for the poor habitat, A\; is

set at %, and that the total fraction of poor habitat, p, is % Thus the total fraction of good

habitat, Ay, would be 1 —p = %.So for the population to increase the per capita growth rate
3-1 _ 4

for the good habitat, A2, would need to be greater than (%)1%55 =3 =3

Exercise 2.7 Logistic Equations (M)

dt(y N1 - Ydt
N -2y N - N
d = rdt
N1 - %)

partial fraction decomposition:

1 _A B
Ni-m N
N
1=A(1- =)+ BN
(1- %)+

A
1=A—- =N+ BN
K +

0~N+1:A+N(B—l1{A)

—A=1,B-+A=0,s0 B=+

Integrate:

1 !
/Nd]\H—/K_NdN—/rdt

11



=InN—-In(K —N)=rt+c

N
—ln(K_N)—rt—l—c
Initial conditions: t =0 = N(t) = N(0)
N(0)
ln(iK — N(O)> =c

Plug constant back in, and take the exponential of each side.

exp(ln(K]j(](\)[)(o) )) = exp(rt + ln(}%))
N(t) N(0)
=N - P o
N(O) = g P (K N (o)
_ N(0)Kexp(rt)  N(0)exp(rt)N(t)
N === N(O)  K-—N(0)
Now isolate and solve for N(t).
N(O)exp(rt)N(t) = (K = N(0)N(t) ( )K exp(rt)
K — N(0) KN(0) N(0)
K — N(0) + N(0) exp(rt) ( )K exp(rt)
M= —No ~ k-N0)
_ K — N(0) ( ) exp(rt)
N = TN T N(0) + N©O) oxp(rD) N (0)

Now simplify the equation, and rearrange the denominator:

(t) N(0)K exp(rt)
K + N(0)(exp(rt) — 1)

Now we’ll check this result. As ¢ — oo then N(¢t) — K. This makes sense since as time goes
to infinity the population size will level off at its carrying capacity, K. At ¢ = 0, then N(t)
will be equal to N(0) as it must be.

12



Exercise 2.8 Ricker Map (E/M)

AN N(t+dt) — N(t)

) N(t
g = limao di S

.

— rN(#)(1 -

Now let us ignore the limiting process in the previous equation, and simply set dt = 1. If we

do that then we can write

N(t+1) = N(t) = rN(#)(1 — )

This equation is called the logistic map.

We can continue to switch N (¢4 1) to a different form by using N(t +1) = AN(¢) f¥® and

since we often set f(n) = exp(—bN) we obtain:

N(t) rN

N{t+1) = N8 exp(r(1 - ) = N(t)exp(r) exp(~ ")
N(t+1) = AN(t)exp(—bN)

A = exp(r)

b=%

a) fN® = exp(—bN), relationship between f and bis f = ex;(b).
b)Ricker Map N(t + 1) = AN(t) exp(~bN(t)) = AN(t) monay-
as it wants since exp(bN (t)) > 1, therefore apenmy > L and AN(t)WlN(t))
be less than zero unlike in the equation N(t+1) = N(t)+rN(t)(1— %) where if N(t) > K

then N(t + 1) could be less than N(t) and even negative.

N(t) can grow as large

so it will never

¢)A Taylor Expansion can be used to show the connection between the Ricker and Lo-
gistic Map. The Taylor Expansion of exp(x) = >, ’;—T =1+5+ “’;—? + o
The Ricker Map:

N(t+1) = AN(t) exp(—bN(t))
N(t+1)=AN(t)[1 —bN(t) + ..

13



so that
N({t+1)~ AN(t)(1 —bN(t))
from equation 2.29 we know
N(t+1) = (r+1)N(t) — %N(t)z

and the coefficients for the Logistic Map would be: A=7r+1,0= &

Exercise 2.9 (E)
Two dimensional equations and classification of steady states

Equations from 2.37 in the book:

dx
= = Ar+B
i r + By (5)

Y
—=Cx+D 6
7 z + Dy (6)
So we begin by taking the second derivative with respect to x, and obtain:

d*x d:c dy
dez dt dt

Next we substitute in % = Cz + Dy and y = (% — Axz)(%) obtained from Equation 5.

d’x dx
—=A—+B(Cx+ D
gz ~ A T B+ Dy)
d’x dx 1, dx
—=A—+B D — —A
qiz ~ g TBCT D) — Av)
Now we consolidate the coefficients for x, Cflf, and letg
d’x dx 1 dx
=A—+BC+BD—=(——-A
aiz ~ g TBOH BD R —AY)

14



2
= "z Adt—l—BC'x—i-Dd—ADm

A2 d d
dx dx
:—ﬁﬁ‘(A—i-D)df—l—(BO DA)
d*x dx
EE—@4+DET+4DA BC)x
Exercise 2.10 (E/M)
We know that
d2[E1 dl’l
2
ddtl;? (A+ D)dj2 4 (AD — BC)ZEQ —0 (8)
Where a and b are constants.
We need to show that
?X dX
T (A+ D)E + (AD — BOX (10)

So we begin by substituting Equation 9 into Equation 10.

d?(azy + bx)
dt

d(axq + bxs)

—(A+ D) o

+ (AD — BC)(axy + bxs)

Continue by consolidating variables and factoring out a and b from the variables.

dPax;  d*bxy dar; dbxs
—(A+D AD — BC bry) =0
gz T ar A DIGm ) J(azs +br2)
ad’xy  bd*x? Aadry, Abdx? DAdr; DBdz,

= — — — — AD ADbxy—B —BCb

0 7 + 7 7 7 7 7 + axri+ T Caxy Cbxs
d2£ll'1 ADiIZ'l Ddl’l d2.1'2 AD.I'Q Ddl‘g

= — - ADx, — B — — ADxy — B

0 a[ di dt dt + T Ciﬁ] + b[ dt dt i + i) CZL’Q]

By Equations 7 and 8, both terms in brackets are equivalent 0. Therefore X (t) is a solution.

Exercise 2.11 (M)
+ J(As
Show that if A is a solution of A = ((A+D) (;4 D 1450
v = A — A that Equations 11 and 12 are satisfied.

) and that if we set u = B and

15



(a—MNu+ Bv=20
Cu+(D—-XNv=0

Substitute in u, v.
In equation 11, —vu + uv = 0; the equation is satisfied.
For equation 12;
CB+(D—-ANA—A)=0
CB+D)AN—DA— )N+ A\=0
~M+(A+D)N—-DA+CB=0
N —(A+D)A+ (DA—-CB)=0

This is in the form of the characteristic polynomial satisfying = =
b=A+D,c=DA-CB.

Therefore

LA D)*\/(A+ D)2 — 4(AD — BC)

2
(A+ D)*\/(A+ D)? — 4BC
B 2
Thus Equation 12 is satisfied.
Exercise 2.12 (M-H)
av Vv
— = 1——=)—0bVP
o rV( K) Vv
E =cVP—mP
dt
Converting to per capita growth rates we have
av 1 %
——=r(l——=)—bP
av - g
dP 1
EF = CV —m

16

(12)
btV —dac 22_4%. Soa =1,
(13)



a)units of parameters

1 1
time’ years

V=number of prey

r =

K=number of prey, carrying capacity

P=number of predators

b=years 'number of predators™
_ 1 1
€= (time>(prey)
_ 1
M = Yme
dv. __ prey
dt time
dP __ predators
dt —  time

1

b)The differential equation describing prey’s population levels includes what the popula-

tion would be without the presence of predetors, contingent on the carrying capacity minus

the encounter rate with predators and how many predators there are. Similarly with the

predator quation, their population is contingent on the number of prey available and how

often the predators encounter prey minus their populations natural mortality rate.

The c, b relationship:

(rate at which prey disappear)/(rate at which predators appear)

of prey needed to ‘make’ a predator.

¢) isocline analysis: solve for

If % = 0 either V' =0, or:

Therefor the y-intercept is 7

av. _ dP _

dt — dt

v v
= V=) —bP)

, and the x-intercept is K.

17

__ bPV __
T cPV T ¢

b g is the number
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Figure 2. Isocline Analysis when % = 0
Second steady state:

£ZCPV—szo
dt

If ‘fi—f = 0 either P =0, or:

o |3

18
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Figure 3. Isocline Analysis when % = 0. The steady state is (", P).

There are two cases for the isocline analysis depending on the relationship between K and

m

-
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Figure 4. First steady state where > > K. This case leads to the extinction of the

predators.

( &"b)
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Figure 5. Second steady state where "* < K. This scenerio leads to predator-prey cycles.

d)Classify the steady states

FV.P) =1V (1 — [Z) PV

g(V,P) = cPV —mP

The partial derivatives of the functions f and g are:

2rvV
fV:'r—?—bP
fp=—bV
gv =cP
gp=cV —m

The Jacobian is:

r—2L—bP —bV
TV, P) = IC(P cV—m

r—2¥ _pp —pV
TV, P) = Ic{P cV—m

At the steady state (%, (1 — %))

c?

21



First Analysis: Let K — oo, K > ™ then 2;? — 0, and % — 0 then

m r r—r —b2
J(’b)_[ cr 0 ]

b

m T 0 —b2
J(C’b)_[cg 0 :|

Eigenvalues are roots of the characteristic equation.

(A+D)E\/(A+D)24+4BC
)\1,2 - 2

A=
B:—bm
C
cr
C=—
b
D=0
O L A Y yoves

Values under the radical tell us about the oscillations about the steady state. A; is purely

complex if K — oo. A\ becomes purely imaginary and pertubations from the steady states

lead to oscillations of the population values.

Second Analysis:

2r n
m r n —ZF bl —5) -2
JE -y = | TR TR
¢'b K (1= %) e —m
m r m i bm K
J — - 1 c — Km cK
(c b( K)) [”(1—%) 0 ]

22



input into standard equation:

—rm -+ |, —rm —bmK _ cr m)

A= cK (cK ) ( cK )(b)(l_E

The (=%2)* shows that the steady state will be stable.

Fm>K—(1-+%)<0
f2<K—(1-%)>0
We need K > ™ for the predators to persist. Thus 1 — & > 0 always.
The eigenvalues are real if
M., —bmK -
i 1 - <
(P> A (T - =)
rm 2
> 21— <
(ck)? K
2ck)?| /1 — <
rm > 2(ck)? 7
> 2(ck — <
P> 2(ck)1- =

Otherwise, the eigenvalues are complex.
What do the eigenvalues tell us that the isocline analysis doesn’t?
We can see the oscillation but not the stable steady state.

e) What happens to the eigen values as K goes to oo?

Discussed above before the Second Analysis.

Exercise 2.13 (M)
Show that

plant) = < exp(— ) (14)

is a solution to

23



0.2

Pt = —UpPz + ?pzx (15)

Part 1: To begin let’s solve p;, % (x Y

c(t) = \/ﬁ and u(x,t) = (9260;?) :
Then

, from Equation 14. Let p(z,t) = ¢(t) exp(u(z,t)) where

de du

pe= 5 explu) + c(t) 7 exp(u)

Now we’ll solve illg, and d“ so we can plug them into our p; equation and then compare it to

Equation 15.

dc 1 1 3
_ .tz

dat 2 V2mo?

du  2(x —vt)v(20%t) 4+ 20%(x — vt)?

dat (202t)?
Therefore
1 3 —(z —vt)?, 1 2(z —vt)v(20%t) + 202 (x — vt)? —(z —vt)?
=5 \/27m2 T ) oy (2021)? xp(— 5

Simplifying we obtain:
—v(=2(z — vt) exp(u)(20%t)) — 0% exp(u)(20%t) + 20%(x — vt)* exp(u)
(2m0t)2 (202t)2

Part 2: Now we evaluate p, from Equation 15 and compare it to our last answer.

Pt =
Since p; = —vp, + %me, we will solve for p, and p,, and plug them back into our equation.

Pz = c(t)uy exp(u)
Doz = (1) [tge exp(u) + u? exp(u))]

2 .
Now we solve for u,, u,,, and u; to complete our p, and p,, equations.

—2(x — vt)
202
—2
202t
—2(x — vt) 2

202t

Uy =

(ua)” = (

24



Now plug those back into the p, and p,, equations and obtain:

1 —2(z — vt) —(z —vt)?

Pz = : 5 ) eXp(72)
V202t 204t 207t

1 =2 —(z — vt)? —2(x — vt) 4 —(z — vt)?

P = vV 20215[2 e exp( 20t )+ 202t )" expl 202t )
Now putting the previous equations into Equation 15 we obtain:
1 —2(x — vt) —(z — vt)?
pr="0 202t 202t exp( 202t )+

o 1 =2 —(z — vt)? —2(z —vt) —(z — vt)?

? /_202t[2 N . eXp( 202t ) + ( 202t ) ’ eXp( 202t )]

Simplifying we obtain:

—v(=2(z — vt) exp(u)(20%t)) — o exp(u)(202t) + 202 (x — vt)? exp(u)

b= 16
' (2702t)2 (202t)? (16)
This is the same as out p; obtained from Part 1. Therefore p(z,t) = \/271“7% exp(_(g(:;f)Q) is
a solution to p; = —vp, + ";pm.

Exercise 3.1 (E)

What are the associated z;, and p, when the fair die is thrown twice and the results summed?

For the discrete random variable Z that can take a set of values {z;} we introduce probabli-
tilties py defined by Pr{Z = z;} = px. So py =the number of ways to get outcome k over
the total number of outcomes, 36.

Sample Calculation:
For zg = 7, Since 7 = 146,245, 34+4,4+3,5+2,6+1 there are six possible ways to obtain zg.

2122719:%
Zp=3,p2 =55
z3 =4, p3 =35
Z4 =95, p1= 35

Z5:6ap5:%

25



Z6:7>p6:%
27287197:36
23 =19, ps = 55
29:10,p9:%
210:11,]010:%

_ _ 1
z1 =12, pi1 = 55
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e @

Figure 6. Probability Distribution Function of Die Thrown Twice
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Exercise 3.2 (E)
Pr{Z < z}, Z is the sum of two die.
Pr{iZ <z} = ZkK:(i) pr, where K (z)=the value of k£ so that the sum is less that or equal to

zZ.

Example Calculation
Pr{iZz<3} =S m=p+m=h+Z=5

Pr{Z <2} =0
K@)
= 36
K(3) 3
Pr{z<3}=Y =_
iz 30
K@ g
PriZ<4}y=> =_—
- 36
K(5) 10
= 36
KO 15
Pr{Z<6}=Y =_"
- 30
K(7) 21
= 36
K(8)
26
im0
K(9)
30
Pr{Z <9} = =
— 36
K(10) g3
Pr{zZ<10}=Y =2
1 36
K1) ge
1 36
K(12) g0
Pr{Z <12} = = —
k=1 36



Exercise 3.3 (E)

For a continuous random variable, the variance is Var{Z} = [ (z — E{Z})*f(2)dz. Show
that an equivalent definition of variance is Var{Z} = F{Z?} — E*{Z} where we define
E{Z*} = [22f(2)d=.

Var{Z} = / (2 — B{ZY)2f(2)dz
- / (22 — 22E{Z} + EX{Z}) f(2)dz

- /fo(z)dz _2B{Z) / 2f(2)dz + EX{Z)
= BE{Z*} —2B{ZYE{Z} — E*{Z}

= B{Z* —2E*{Z} + E*{Z}

= B{Z?} - E*{Z}

Exercise 3.4 (E)
Friend’s inspection Exercise:
One of my friends, Tracy, is another math major. When asked to identify the most variable

series she chose series C. For the least variable she guessed series B.

The other person I asked was the librarian at the science library, named Barb. She was
less than thrilled to examine the numbers, but when she did she guessed the following:
Most variable series- series B.

Least variable- series A.
Now for the actual calculations!

Series A
45,32,12,23,26,27,39

_ 45432412423426427439 _

Mean= 45 292’7 32—29)2 1; 35?'21423 29)24(26—29)2+(27—29)24(39—29)2
Variance— (457292 +(32-29)+(12-29)°+( = )2+(26-29)"+(27-29)°+(39-29)" _ ()
Standard Deviation= /Var(Z) = /100 = 10

Coeflicient of variation= ;—8 = .34

Series B

1401, 1388, 1368, 1379, 1382, 1383, 1395

Mean= 1401+1388+1368+13779+1382+1383+1395 — 17 385
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Variance— (1401-1385)%+(1388—1385)+(1368—1385)%+(1379—1385)+(1382—1385)+(1383-1385)? +(1395-1385)> _

7
100
Standard Deviation= 10

Coeflicient of Variation= % = .007

Series C
225,160, 50,115,130, 135,195

Mean= 225+160+50+1154130+135+195 __ 144

7
. 225—144)24(160—144)2 —144)24(115—144)24(130—144)2+(135—144)2+(195—144)2
Variance— (225 )?+(160 )2 +(50 )?+(115 . )?+(130 )?+(135 )2+(195 ) 2,767

Standard Deviation= /2767 = 52

Coefficient of Variation= % = .36

By inspection it is not at all clear that the series A and B would have an identical standard
deviation and variance since the numbers in series B are so much greater than in A. The
standard deviation looks small relative to B. It is also interesting to note that the coefficient
of variations is similar in series A and C. So their dispersion of a probability distribution is

nearly equal.

Exercise 3.5 (M)

Show that
Var{K} = Np(1 - p)
Since
Var{K} = B{K*} — (E{K})* (17)
and we already know that
E{K}*= Np (18)

Then we’ll continue by solving for EF{K?}.

B{K*} = i P ( M )pku —p)"
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To process one factor of k with j = k — 1, use the same method used to obtain the mean.

split the sum:

then let m =N — 1

S (5o 3o

the first sum is equal to mp, the second sum is equal to 1.
E{K*} = Np(mp +1)
Now substitute back in N — 1 for m.

= Np((N —1)p+1)
= Np(Np—p+1)
= (Np)> = Np*+ Np (19)

Going back to our initial equation, Equation 17, we plug in Equation 18 and 19 to obtain:

Var{K} = (Np)* — Np* + Np — (Np)?
= Np(p—1)
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Exercise 3.6 (E)

Pr{K=k+1} _ (N—k)
Show that Prik=k] = (k+1)(1—pp)

From 3.22 we know

PriK =k} = k!(]\ivi]{;)!pk(l N
_ NWa-p)"
k(N — k)1 —p)*

N'p*( —p)™
RN = k) (N —k—1)!I(1 - p)*

and we also know that

N!pk+1 (1 . p)N

Prif =K+ U = 00w — 1 D)@ — g

NipFp(1 —p)N

(k+ DN = (k+ 1)1 = p)*(1 —p)

so that

Pr{K=k+1}  p(N —k)

Pr{K =k} (k+1)(1—p)

Exercise 3.7 (E)
Show that the MLE for p is p = %

Liplk, N) = log() + klog(p) + (N — )log(1 ~p)
dr 1 1

o k(;) + (N - k)(ﬂ)(—w
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Set % = 0 and solve for p.

k N-—k
0= — —
p 1-p
k — pk — pN + pk
l—p
0=k —pk—pN + pk
—k

N P

0=

.k
P=N

Exercise 3.8 (E)

Show that setting % = 1 leads to the equation %%;m = 1. Solve this equation for

N to obtain N = % — 1. Does this accord with your intuition?

We know that

. N—l—l' kl_ (N+1)—k
LY+ 1lkp) = k:!)(]}\)f(—lf)k:)!
_ (N4 NI -p) (1 - p)
KN +1—k)(N—k)(1—p)F
. k(1 — )\ N—Fk
= LNk p) = N'i!&' —pk?)!
N =p)N
kNN —k)!(1 —p)*

So that

LN +1lkp) (N4 1)(1-p)
L(NIk.p) N+1—k

(N+1D)(1—p)=N+1—k

—1(N—-Np+1—p)=N+1-k

Np+p=k

p(N+1)=k
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k
N+1="=
p
-k
N=2_
p

Does this accord with your intuition?
Yes. For example if someone is flipping a coin and gets 10 heads then it’s likely that they
threw the dice 20 times.

Exercise 3.9 (M)
The probabity of having k events in ¢ to ¢t 4+ dt is the sum of having either £ — 1 events in
time 0 to ¢ and 1 event in time ¢ to ¢t + dt or k events in time 0 to ¢ and none in time ¢ to

t + dt. Since they are mutually exlusive events we can write them as

dp,

We obtain the general equation by solving for <.

Py(t +dt) — ( )=
Py(t + dt) — Py(t)
dt

P (t)dt + o(dt) — A\Py(t)dt
o(dt)
dt

= APp_1(t) — APg(t) +

let dt — 0

Uk AP (1)~ () (20)

Show that the solution of equation is Py (t) = (’\k,) exp(—At)

Start by evaluating APy_1(t)

(AR)FLexp(—At)  AtF~texp(—At)

e (e N (1]
L (Ak)Fexp(— At) _ LR exp(— At) _ LR exp(—\t)
AR = A= K k(= 1)]
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Thus

RN L exp(=At)  ARAt" exp(—At)

APy (t) + AP (t) =

k(k—1)! k(k+1)!
_ MNtFexp(—At) (Kt~ — X)
B k!
Now solve for %:
db, X\ d ,
— = ——1 —At
i~ wa M
)\k
= g(ktk_l exp(—At) + t*(—X) exp(—At))
! N
= ﬁ(ktk’l exp(—At) — t" X exp(—At))
MRt exp(—At) — tPAR X exp(—At)
B k!
~ NetFexp(=At)(kt™! = A)

k!

Thus Py(t) = (’\kt!)k exp(—At) is the solution to Equation 20.

Exercise 3.10 (E)
Show that % > 1 implies M\t > k.

By equation 3.40 we know py(t) = %pk,l(t). So the ratio 24

pr—1(t)

L
PR
k

So since 4y > 1 then 1 > £, thus A\t > k.
k

Exercise 3.11 (E)
L(Alk,t) = =Xt + klog(\t) — log(k!) = =Xt + klog(\) + klog(t) — log(k!)
Show the MLE is A = %

Now set % — 0 and solve for \.
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t
Exercise 3.12 (E/M)
Show that E{A%} = “fU
BN} = [ 02 exp(—ax) vt
) = [ (oo
av
= — —aX)\ Tt
X0 / exp(—a))
N T(w+2) o'T(v+2)
S T(v) avt? ara?l(v)

Since

Fv+1)= v+ 1)vI'(v)

Then E{A?} will be

From exercise 3.3 we know Var{A} = E{A?*} — (E{A})?. Also from Equation 3.56 we know
that E{A} = £. Thus

«

V2 + v 1% v? + v — V2 1%

Var{A} = v (5)2 -—— ==
v 1 2 1

5= = (E{AY?
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Exercise 3.13 (E)
Interpretation of results of the graph "Probability of No Events’, with £ = .01,.1,1,2,10:

The negative binomial distribution becomes more and more skewed as the dispersion param-
eter decreases. For k = .1 there is more than a 60% chance of zero events, even though the

mean is about 10. Wow!

Probability of No Events

Probability

Mean Values

Exercise 3.14 (E)
X is normally distributed with mean 0 and variance 1. f(x) = \/Lz_w eXp(_T‘”z)
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Y—p

Transformation X = —£. For transformation the Jacobian is %Y=£ — 1

dy o o’

)

Exercise 3.15 (E)

Show that SSQ(m) is minimized when m is the sample = > | 'Y;.
S8Q(m) = XL,y (Yi — m)?

To minimize SSQ(m) we’ll take the derivative, set it equal to 0, and solve for m.

If we write out the sum we get:

Take the derivative with respect to m:

= g — )+ (g = )+ (g — ) =

0
—2(y1 —m) —2(y2 —m) = 2(ys —m) + ... = 2(yn —m) =0
Now go back to the summation form and solve for m.

2nm — Q(Zyi) =0
nm—Zyizo

1
m:ﬁzyi

Exercise 3.16 (E/M)
$5Q(a,b) = XX, (Vi — a — bX;)?
The derivative with respect to a:
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d N
el —a =X =
a3
— j[(Yl —a—b0X)?+ (Yo —a—0Xy)* + (Vs —a—bX3)? + ...+ (Y, —a — bX,)?]
a
=20V —a—0X;) —2(Ys —a —bXy) —2(Ys —a — bX3) + ... — 2(Y, — a — bX,,)
N N
=2na —2(3_Y;) +20(3_ X))

i=1 i=1
Now we set d%SSQ = 0 for a and obtain:

22, V) — 2b(2, X,)
2n

%Yl—bZX

a =

3\*—‘

Now for the derivative with respect to b:

d N
SSQI_(Yi —a—bXy)!] =
=1
db[(y1 —a—bX)?P+(Yo—a—0Xy)* + (Vs —a—bX3)? + ...+ (Y, —a—bX,)?
(Z)SSQ = —2X1(Yi —a— le) - QXQ(}/VQ —a— bXQ) - 2X3(§/3 —a— ng) — 2Xn(Yn —a— bXn)

N n n
ijSQ =-2n> X;Y;i+2nad X, —2nb> X;

=1 i=1 i=1

Now we set SSQ = 0 for b and obtain:

N N N
2nb> X7 =21 X;Y; —2na)_ X;
=1 =1 V=
2n SN, XY — 2na SN, X

2n SN, X?
ffil XiYi—a ZzNzl X
i X7

b:

[
I
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Exercise 3.17 (E)
Show that if Y is defined by ¥ = Aexp(cX — 10?), then E{Y} = A and Var{A} =
A?(exp(c?) — 1). Use equation 3.9 to find the expected value:

Z = Aexp(cX)

B{Z} = Aexp() (21)
E{Z*} = A’E{exp(20X)}
= A? exp(20?)
Y = Zexp(—;az)

B{Y} = B{Zexp(~50)

1
= exp(—50") E{Z}
By equation 21 then
L,
exp(~ 10" E{Z} = A,
So
L,
E{Z} = Aexp(§a )
and
E{Y}=A
To find the variance we recall that Var{Y} = E{Y?} — E{Y'}*.

E{Y?} = E{Z” exp(—0?)}
= exp(—0?)E{Z*} = A% exp(c?)
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So then variance will be

Var{Y} = A%exp(c?) — A?
_ 2(exp(o?) — 1)

Exercise 3.18 (E/M)

Data: s successful searches in a attempts
a S a—s
, | PA=p) " h(p)

f(pl(s,a)) =
Jo ( Z )ps(l — )2~ fo(p)dp

This is Bayes Theorem. We can simplify and write.

_ ps(l _ p)a—s
Jo p*(1 = p)e=sdp

f(pl(s, a))

The denominator can be written in terms of the beta function.

B(s,a) 2/01195

B(s+1l,a+1) :/0 p*(1 —p)**dp
__ pr(=p)
f(p|(37a)) - ﬁ(s+1,a—s+1)

Y1 —p)* P dp
1
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posterior probability

1
Bla,B)B(s+1,a —s+1)

P (1= p) (1 —p)!

— pa+571(1 . p)oﬂ»,@fsfl
a=a-+s
=a+F—s

The new parameters are a + s, a + 3 — s.
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